[ | E-mail | Share ]
Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Project with Sandia National Laboratories leads to promising optoelectronic device
HOUSTON (Feb. 27, 2013) Researchers at Rice University and Sandia National Laboratories have made a nanotube-based photodetector that gathers light in and beyond visible wavelengths. It promises to make possible a unique set of optoelectronic devices, solar cells and perhaps even specialized cameras.
A traditional camera is a light detector that captures a record, in chemicals, of what it sees. Modern digital cameras replaced film with semiconductor-based detectors.
But the Rice detector, the focus of a paper that appeared today in the online Nature journal Scientific Reports, is based on extra-long carbon nanotubes. At 300 micrometers, the nanotubes are still only about 100th of an inch long, but each tube is thousands of times longer than it is wide.
That boots the broadband detector into what Rice physicist Junichiro Kono considers a macroscopic device, easily attached to electrodes for testing. The nanotubes are grown as a very thin "carpet" by the lab of Rice chemist Robert Hauge and pressed horizontally to turn them into a thin sheet of hundreds of thousands of well-aligned tubes.
They're all the same length, Kono said, but the nanotubes have different widths and are a mix of conductors and semiconductors, each of which is sensitive to different wavelengths of light. "Earlier devices were either a single nanotube, which are sensitive to only limited wavelengths," he said. "Or they were random networks of nanotubes that worked, but it was very difficult to understand why."
"Our device combines the two techniques," said Sbastien Nanot, a former postdoctoral researcher in Kono's group and first author of the paper. "It's simple in the sense that each nanotube is connected to both electrodes, like in the single-nanotube experiments. But we have many nanotubes, which gives us the quality of a macroscopic device."
With so many nanotubes of so many types, the array can detect light from the infrared (IR) to the ultraviolet, and all the visible wavelengths in between. That it can absorb light across the spectrum should make the detector of great interest for solar energy, and its IR capabilities may make it suitable for military imaging applications, Kono said. "In the visible range, there are many good detectors already," he said. "But in the IR, only low-temperature detectors exist and they are not convenient for military purposes. Our detector works at room temperature and doesn't need to operate in a special vacuum."
The detector is also sensitive to polarized light and absorbs light that hits it parallel to the nanotubes, but not if the device is turned 90 degrees.
The work is the first successful outcome of a collaboration between Rice and Sandia under Sandia's National Institute for Nano Engineering program funded by the Department of Energy. Franois Lonard's group at Sandia developed a novel theoretical model that correctly and quantitatively explained all characteristics of the nanotube photodetector. "Understanding the fundamental principles that govern these photodetectors is important to optimize their design and performance," Lonard said.
Kono expects many more papers to spring from the collaboration. The initial device, according to Lonard, merely demonstrates the potential for nanotube photodetectors. They plan to build new configurations that extend their range to the terahertz and to test their abilities as imaging devices. "There is potential here to make real and useful devices from this fundamental research," Kono said.
###
Co-authors are Aron Cummings, a postdoctoral fellow in Lonard's Nanoelectronics and Nanophotonics Group at Sandia; Rice alumnus Cary Pint, an assistant professor of mechanical engineering at Vanderbilt University; Kazuhisa Sueoka, a professor at Hokkaido University; and Akira Ikeuchi and Takafumi Akiho, Hokkaido University graduate students who worked in Kono's lab as part of Rice's NanoJapan program. Hauge is a distinguished faculty fellow in chemistry. Kono is a professor of electrical and computer engineering and of physics and astronomy.
The U.S. Department of Energy, the National Institute for Nano Engineering at Sandia National Laboratories, the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice University, the National Science Foundation and the Robert A. Welch Foundation supported the research.
Read the abstract at http://www.nature.com/srep/2013/130226/srep01335/full/srep01335.html
This news release can be found online at http://news.rice.edu/2013/02/27/rice-builds-nanotube-photodetector/
Follow Rice News and Media Relations via Twitter @RiceUNews
Related Materials:
Kono Group: http://news.rice.edu/2013/02/27/rice-builds-nanotube-photodetector/
Robert Hauge: http://chemistry.rice.edu/FacultyDetail.aspx?RiceID=605
NanoJapan: http://nanojapan.rice.edu
Franois Lonard's group: http://www.sandia.gov/nanocarb
Optoelectronic Properties of Single-Wall Carbon Nanotubes: http://www.ece.rice.edu/~kono/Seb-AM2012.pdf
Image for download:
http://news.rice.edu/wp-content/uploads/2013/02/02XX_PHOTODETECTOR-WEB.jpg
This illustration shows an array of parallel carbon nanotubes 300 micrometers long that are attached to electrodes and display unique qualities as a photodetector, according to researchers at Rice University and Sandia National Laboratories. (Credit: Sandia National Laboratories)
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.
If you do not wish to receive news releases from Rice University, reply to this email and write "unsubscribe" in the subject line. Office of News and Media Relations MS 300, Rice University, 6100 Main St., Houston, TX 77005
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: David Ruth
david@rice.edu
713-348-6327
Rice University
Project with Sandia National Laboratories leads to promising optoelectronic device
HOUSTON (Feb. 27, 2013) Researchers at Rice University and Sandia National Laboratories have made a nanotube-based photodetector that gathers light in and beyond visible wavelengths. It promises to make possible a unique set of optoelectronic devices, solar cells and perhaps even specialized cameras.
A traditional camera is a light detector that captures a record, in chemicals, of what it sees. Modern digital cameras replaced film with semiconductor-based detectors.
But the Rice detector, the focus of a paper that appeared today in the online Nature journal Scientific Reports, is based on extra-long carbon nanotubes. At 300 micrometers, the nanotubes are still only about 100th of an inch long, but each tube is thousands of times longer than it is wide.
That boots the broadband detector into what Rice physicist Junichiro Kono considers a macroscopic device, easily attached to electrodes for testing. The nanotubes are grown as a very thin "carpet" by the lab of Rice chemist Robert Hauge and pressed horizontally to turn them into a thin sheet of hundreds of thousands of well-aligned tubes.
They're all the same length, Kono said, but the nanotubes have different widths and are a mix of conductors and semiconductors, each of which is sensitive to different wavelengths of light. "Earlier devices were either a single nanotube, which are sensitive to only limited wavelengths," he said. "Or they were random networks of nanotubes that worked, but it was very difficult to understand why."
"Our device combines the two techniques," said Sbastien Nanot, a former postdoctoral researcher in Kono's group and first author of the paper. "It's simple in the sense that each nanotube is connected to both electrodes, like in the single-nanotube experiments. But we have many nanotubes, which gives us the quality of a macroscopic device."
With so many nanotubes of so many types, the array can detect light from the infrared (IR) to the ultraviolet, and all the visible wavelengths in between. That it can absorb light across the spectrum should make the detector of great interest for solar energy, and its IR capabilities may make it suitable for military imaging applications, Kono said. "In the visible range, there are many good detectors already," he said. "But in the IR, only low-temperature detectors exist and they are not convenient for military purposes. Our detector works at room temperature and doesn't need to operate in a special vacuum."
The detector is also sensitive to polarized light and absorbs light that hits it parallel to the nanotubes, but not if the device is turned 90 degrees.
The work is the first successful outcome of a collaboration between Rice and Sandia under Sandia's National Institute for Nano Engineering program funded by the Department of Energy. Franois Lonard's group at Sandia developed a novel theoretical model that correctly and quantitatively explained all characteristics of the nanotube photodetector. "Understanding the fundamental principles that govern these photodetectors is important to optimize their design and performance," Lonard said.
Kono expects many more papers to spring from the collaboration. The initial device, according to Lonard, merely demonstrates the potential for nanotube photodetectors. They plan to build new configurations that extend their range to the terahertz and to test their abilities as imaging devices. "There is potential here to make real and useful devices from this fundamental research," Kono said.
###
Co-authors are Aron Cummings, a postdoctoral fellow in Lonard's Nanoelectronics and Nanophotonics Group at Sandia; Rice alumnus Cary Pint, an assistant professor of mechanical engineering at Vanderbilt University; Kazuhisa Sueoka, a professor at Hokkaido University; and Akira Ikeuchi and Takafumi Akiho, Hokkaido University graduate students who worked in Kono's lab as part of Rice's NanoJapan program. Hauge is a distinguished faculty fellow in chemistry. Kono is a professor of electrical and computer engineering and of physics and astronomy.
The U.S. Department of Energy, the National Institute for Nano Engineering at Sandia National Laboratories, the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice University, the National Science Foundation and the Robert A. Welch Foundation supported the research.
Read the abstract at http://www.nature.com/srep/2013/130226/srep01335/full/srep01335.html
This news release can be found online at http://news.rice.edu/2013/02/27/rice-builds-nanotube-photodetector/
Follow Rice News and Media Relations via Twitter @RiceUNews
Related Materials:
Kono Group: http://news.rice.edu/2013/02/27/rice-builds-nanotube-photodetector/
Robert Hauge: http://chemistry.rice.edu/FacultyDetail.aspx?RiceID=605
NanoJapan: http://nanojapan.rice.edu
Franois Lonard's group: http://www.sandia.gov/nanocarb
Optoelectronic Properties of Single-Wall Carbon Nanotubes: http://www.ece.rice.edu/~kono/Seb-AM2012.pdf
Image for download:
http://news.rice.edu/wp-content/uploads/2013/02/02XX_PHOTODETECTOR-WEB.jpg
This illustration shows an array of parallel carbon nanotubes 300 micrometers long that are attached to electrodes and display unique qualities as a photodetector, according to researchers at Rice University and Sandia National Laboratories. (Credit: Sandia National Laboratories)
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.
If you do not wish to receive news releases from Rice University, reply to this email and write "unsubscribe" in the subject line. Office of News and Media Relations MS 300, Rice University, 6100 Main St., Houston, TX 77005
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-02/ru-rbn022713.php
maya angelou joan of arc tony robbins bon iver abraham lincoln vampire hunter their eyes were watching god lara logan
No comments:
Post a Comment